
PROPOSED NOVA

 DATABASE INTERFACE REQUIREMENTS
BASED ON MINOS (AND SOUDAN2 AND SNO) EXPERIENCE

Contents
Overview! 2

Requirements! 2
User Access! 2
Performance! 3
Support! 3

Discussion! 4
Basics of Table Structure! 4

Primary table! 4
Validity table! 5

Design Philosophy! 6
Other Important Issues! 7

Text based override! 7
Extended queries! 8

Deep in the design! 8
Further Discussion! 9
Examples! 10

Use Case 1: normal queries! 10
Use Case 2: extended queries! 10

Bibliography! 11

NOvA Off l ine Software

R o b e r t H a t c h e r (f o r N i c k We s t , e t . a l .) • F N A L / C D

Overview
The original requirements for the MINOS offline software database interface were drawn up
circa-1999 primarily based on the prior experience of Nick West, drawing on similar work for
the Soudan2 and SNO experiments. Many of the fundamentals worked out in those experi-
ments were carried over to the MINOS design while additions were made based on what was
known to be lacking in those designs and the addition of new requirements from MINOS, nota-
bly a requirement to support multiple detector locations (Near, Far and CalDet test at CERN).

This document will try to summarize these requirements and provide rationales for the design
and implementation what was the result. Many of the reasons for choosing a particular design
of the system still hold for experiments such as NOvA, while actual implementation technology
might need some modifications. Readers are urged to peruse the relevant MINOS ``Package
Rationale” and ``User Manual’’ sections. I will endeavor to restate most of those requirements
and lay out the reasoning behind them in this document while trying to remove biases that are
not technology agnostic.

Requirements
The primary requirements of the offline database interface had to do with delivering datasets to
the reconstruction and analysis software in a performant manner. The canonical example is
calibration data. The code is intended to satisfy the request: ``give me all the data of that type
which is valid for this event’’. Alternative views, or extended queries of the data proved to also be of
use, optimization for the first type of query it shouldn’t preclude the alternative.

User Access

1. Data must be presented to the end-user as a convenient collection, or result set, of table-
specific class-objects where objects represented a structured row. The system should not im-
pose a particular scheme for segmenting the data; a row might represent a single channel or
some collection of channels, whichever is sensibly sized for the table designer/end user.

a. The minimal specification of what data to return should require no more than the table
name/class, a timestamp, which detector, and whether it was data or simulation. This
should yield the ``best’’ valid collection with no additional hints or selections on the
user’s part. In a standard query this should present no ambiguities (i.e. the same channel
should not appear more than once in the collection).

b. The class-objects should support table schema evolution in a convenient manner; gener-
ally this means the addition of columns, but could in extreme circumstances mean renam-
ing or reordering columns. There should be support for updated code to be used by sites
that haven’t transitioned their database table format and older code releases to sensibly
handle newer layouts after a transition.

c. The collection structure should support an indexing scheme that avoids the need for the
user to loop over all items in order to find the appropriate item (natural indices).

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

2

2. The system must have the ability for the end user (i.e. not the database administrator) to logi-
cally re-create the state-of-the-database at any time in the past (this is referred to as rollback).
MINOS, with the potential for disruption of communication between the far site and FNAL,
there were two concerns:

a. Capturing when data entered the system as a whole (creation datetime)
b. Capturing when data entered a particular database server (insert datetime)

3. Once retrieved, the data must be locally cached by a job process; the DBI code should own the
objects and manage the memory, taking care of lifetime issues; choices of const-ness should
protect the user from accidental local modifications.

4. It must be possible to inject database structured data into the system on a job-by-job basis
without special rights. This allows users to test modifications to the database without actu-
ally having privileges to commit to the database.

Performance

5. Tables and entries need to be structured to minimize duplication of the data in the database.
a. The system must support the ability to update only a part of the collection (aggregate) to

allow such activities as partial calibrations for a chosen subset of all the channels; in
NOvA parlance this might mean calibrating only individual blocks at a time, potentially
on different schedules, rather than the detector as a whole.

b. The system must support the ability to put in entries for a limited time period (e.g. mask
out a few channels for a limited time period without duplicating the entirety of the aggre-
gate a second time).

c. There must be support for occasions where rows are valid for multiple detectors or valid
for both real data and simulations, as well as cases where those sets are disjoint.

6. The access to the data must be performant; queries to the DB need to be structured to return
as little data as necessary to satisfy the request without being so overly complex as to bog
down the server; optimizations include indexing the appropriate table columns but no fancy
Oracle-style hints.

Support

7. The system must support a variety of connectivity issues:
a. The system should allow for a cascade of sources, i.e. if valid data isn’t found at the first

source then it should attempt retrieval from a second, etc. It should be easy to configure
the cascade order on a job-by-job basis.

b. The system must be configurable to allow for (albeit constrained) access in situations
where connectivity is limited (i.e. the laptop on a plane problem). While duplication of all
the DB data might not be possible in such cases, one should be able to do processing (e.g.
simulations or code development) by preloading a limited selection of the data into a lo-
cal server. Setting up such a server should be do-able by a standard physicist.

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

3

c. There must be a uniformity in what the end-user sees, independent of the database server
technology (e.g. MySQL, Oracle, etc.).

d. Connections to the database (which for MINOS were direct) must be transient; there are
inherent connection limits and license issues that precluded holding connections open.

8. There should be a basic level of uniformity in the layout of tables where the mechanism for
dealing with the aforementioned requirements is a common feature and the only substantive
difference in table layout is the payload data itself.

9. There must be a distribution system for efficiently synchronizing databases at remote sites:
a. There must be support for the potential for data to flow bi-directionally (e.g. the far detec-

tor serves as a source for some tables but is not the master for most tables).

b. There should be a mechanism for validating that chunks of data are correctly duplicated
at remote sites while allowing for the remote site not to be a complete duplicate (perhaps
limiting their tables to a particular time period or detector).

Discussion

Basics of Table Structure

MINOS used a two-table structure for each type of data: a main table to hold the bulk of the
data, and a validity table to map event info (timestamp, detector, etc) to the single element
(SEQNO) key(s) for a collection of rows in the primary table. By splitting the two components
the design avoids duplicating bulky validity information.

Primary table

The main table consists of a SEQNO column, a ROW_COUNTER column, and one or more (gener-
ally more: 4-20) user specified columns. More than one row can have the same SEQNO in this
table. Lookups are done based solely on the SEQNO column; queries on this table collect all en-
tries matching a selection of one or more SEQNO values. Indexing the SEQNO column provided
a significant performance improvement.

FIELD TYPE NULL KEY

SEQNO int no PRI

ROW_COUNTER int no PRI

data item 1 user specified

data item 2 user specified

...

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

4

The ROW_COUNTER, in conjunction with the SEQNO, allowed the pair to be indexed as a primary
key (which require uniqueness) for integrity purposes. It was a late addition to the design and
isn’t absolutely necessary based on the requirements, but was implemented on recommenda-
tions from professional DBAs.

Validity table

The job of the validity (VLD) table is to allow for the selection of the correct set of SEQNO values
based on the user supplied information (event time, detector, etc.). The SEQNO is the key that
ties elements of the two tables together; it can appear in the VLD table only once (and thus is a
primary key for the VLD table) and multiple times in the main table. This one-to-many mapping
avoids much validity duplication.

FIELD TYPE NULL KEY DEFAULT EXTRA

SEQNO int no PRI auto_increment

TIMESTART datetime no MUL 0000-00-00 00:00:00

TIMEEND datetime no MUL 0000-00-00 00:00:00

DETECTORMASK tinyint yes NULL

SIMMASK tinyint yes NULL

TASK int yes NULL

AGGREGATENO int yes NULL

CREATIONDATE datetime no 0000-00-00 00:00:00

INSERTDATE datetime no 0000-00-00 00:00:00

The [TIMESTART , TIMEEND) pair delineate the time for which the SEQNO is valid; TIMEEND
not being part of the interval to avoid ambiguity on adjacent intervals. The requirement 5b for
being able to patch limited time ranges without data duplication precludes the use of single-
sided intervals (i.e. those implicitly extending from a start time off to ``infinity’’ (and beyond)).
In such a scheme if one has data valid from t1 to infinity, and need to patch from time t2 to t3,
one must put in the patch data as if it were valid from t2 to infinity and then duplicate original t1
data from t3 to infinity. This is wasteful and illogical (if the data is known to be valid only from
t2 to t3). Having an end time also allows users to make entries that are limited to the actual time
range used in calculating the values, or an estimated time when the data is likely to become in-
valid (a time by which a new entry should have been made).

The DETECTORMASK and SIMMASKare masks which are bit-wise tested against the user supplied
detector and simulation flags suitably converted into a single bit, i.e. if the near detector is id 1,
then the first bit is set, if the far detector is 2 then the second bit, etc. This allows a VLD row to
be valid for more than one detector (similarly for data/simulation field). This allows the system
to satisfy requirement 5c.

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

5

The TASK field (sometimes referred to in the design as ``mode’’) allows for further delineation
of the data. It was anticipated that it would be used in two use cases:

• a tracking algorithm might have multiple configurations and use this to distinguish them.
• detector configuration could have two tasks, one for raw calibration one for refined.

MINOS made minimal (but non-zero) use of this taks/mode capability; most tables uniformly
set the default value of zero. It costs little to implement and provides additional flexibility.

The AGGREGATENO column allows a logical collection to be broken down into more manageable
chunks in order satisfy requirement 5a. An example of an aggregate might be a plane, or a
block. Such a unit would be calibrated at the same time. A finer segmentation of the aggregate
(e.g. plane vs. block) means less data if a patch needs to be put in, but at the cost of more VLD
table rows. Generally there is a natural unit or a happy medium can be reached. The query’s
result collection contains the ``best’’ dataset, decided independently for each aggregate.

The CREATIONDATE is the field used to resolve ambiguity of the ``best’’ (requirement 1a) data
meeting all other criteria. If multiple SEQNO rows satisfy the request (span the event’s time,
match the detector flag, etc.) then one simply chooses the latest CREATIONDATE under the as-
sumption that if newer data is available there must have been a reason for generating it (e.g.
updated calibrations).

Finally the INSERTDATE tells when the row was put in this particular database instance. It is
through the use of this field that rollback is possible (requirement 2). By telling the query to ig-
nore all data inserted into the database after a particular timestamp one can re-create the state of
the database at any previous time. One can preemptively use this to freeze a database during
production processing, even while it continues to receive updates.

Design Philosophy

One key aspect of the system is that decisions are based on time, not such things as run number.
This is important for many reasons. First and foremost, time is monotonic and has a sensible
ordering. Almost as important is that it is accessible to the users. They can use it to correlate
with their experience with the detector, e.g. ``channel X broke at time T1 and was fixed at time T2’’ or
``I ran the calibrator on day D and there are the results’’. They can correlate events they find in the
log books or from talking with people with the database entries. Obviously, things happen in-
dependent of run boundaries, so run # is not a good candidate. Time can also serve to unify
multiple detectors (run 1 in the near detector doesn’t correspond to run 1 in the far, but time is
time -- time-of-flight being negligible at the quantization, seconds, of the database).

The only restriction is that the time needs to be UTC (or some equivalent, as long as everyone
agrees on how leap seconds and such are handled); this avoids the two time a year daylight sav-
ings time shifts which can leave holes, or add ambiguity. If at all possible the database field
should be structured to present itself to the user in ISO 8601 format: YYYY-MM-DD hh:mm:ss.
Internally the database, ideally, would hold the data a a single integer (ala time_t, which is
good until 2038-01-18 19:14:07) for efficiency of indexing (heavily used in this scheme).

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

6

Fundamental of the database management in this system is that data goes in and is never modi-
fied or deleted, at least for the master database; this allows for the reconstruction of the prior
history of any table (requirement 2). To fix an error one makes new entries (with newer CREA-
TIONDATE) to obscure the incorrect ones.

Rules are made to be broken, but MINOS saw less than a handful of infractions of the ``no
modifications’’ rule. One of few times this rule was broken in was when two sets went in with
the same creation timestamp (to the second) . This the violated ambiguity resolution scheme
and left the ordering for the ``best’’ choice up to vagaries of how the server found the rows
(semi-random/undefined in some cases). It should be very rare that two datasets are created
covering the same collection at exactly the same second.

The collection class, or result set, as well as holding the individual row objects, must provide a
means of reporting the validity of the collection in the form of a validity range (time range, mask
of all legal detector and simflag mask bits). If a collection is to be made up from multiple ag-
gregates (an thus multiple SEQNOs and VLD rows) then the reported validity range is must be
valid for all the entries. While forming the collection from individual aggregates, the time
range narrows down to starting the latest that any aggregate was valid and ending the earliest
that still covers the requested time. All the aggregate DETECTORMASK and SIMMASK entries are
taken as a logical-and (with each other). The result might be broader than the initial request.;
e.g. ask for data about the near detector and get back data that is valid for both the near and far.

Internal caching of the collection is done on a table-by-table basis; even after the user handle to
the collection is dropped the collection is retained Then when the next event’s validity context
(timestamp, detector, simflag) is compared to the collection’s a decision can be made whether
new data needs to be re-fetched from the server, i.e. once the validity context has moved out of
range. This caching precludes reading a table that is undergoing updates in real time -- MINOS
never had need of such facility. If NOvA does, one could probably slip in an mechanism for
overriding the cache -- at the expense of continually querying the database.

Supported data column types need to include various sizes of signed and unsigned integers
(tiny, small, large), floats and doubles, strings (text) and timestamps. The value retrieved from a
floating point element must be the same (to within possible precision) to what was entered.
This is important for checksumming,. The inability to achieve these goals was part of the reason
MINOS abandoned Oracle after investing a lot of time trying to get it to work.

Ideally, a result set should be able to report how it was formed: which SEQNO entries and which
entry in the cascade of sources. Class-object rows should be able to report which specific SEQNO
they derived from and that SEQNO‘s information such as task/mode, aggregate, creation and
insertion timestamps. This kind of provenance information, while not generally stored into the
event, can be extremely useful for debugging purposes.

Other Important Issues

Text based override

Support for non-privileged user to override of the database is an essential requirement. This al-
lows users to test proposed entries to the database non-destructively. It also allows for ``one-

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

7

off’’ studies (e.g. do simulations where planes at the end were progressively``turned off’’ to
simulate the potential need to scavenge electronic from the downstream part of the detector to
prevent holes in the upstream). The number of instances of a need to do such things will sur-
prised everyone.

 In MINOS this capability took the form of structured ASCII text files that were copied into the
database as temporary (only valid for the individual db connection) tables and then read back
out via the normal mechanism. The details of implementation matter little as long as it is possi-
ble. Minimizing the discrepancy between the format of the real table and how the text file is
structured will make user’s lives easier (i.e. avoid requiring users to write SQL commands).

Extended queries

Some times it is desirable to get back a larger set of rows then the minimum defined by the
standard query, for such cases extended queries exist as an alternative. Extended queries have a
variety of options for acceptance criteria for comparing a time range specified by the query to
the time range of the SEQNO, which serve different purposes. One common use case in MINOS
was an extra layer of caching when the underlying data entries had a very short validity span.
For instance, the magnet current readback was recorded every 4 minutes or so. At the rate
event records were processed this essentially meant that connections to the database were con-
tinually being made and closed. With the use of an extended context query, an additional layer
of caching was introduced so that a full hour or more’s worth of data was retrieved in a single
query and the result wrappered up to loop over the set to find the right entry. This is a point
where further development of the model would have been useful; there were a number of such
nearly-identical instances that were re-invented semi-independently.

Deep in the design

The MINOS interface eventually came to rely solely on the generic TSQL classes (TSQLServer,
TSQLStatement, TSQLColumnInfo, etc) from ROOT to interface with the database. This set
of classes wrapper the particular interface to MySQL. It is likely, though untested, that if the
tables were duplicated in a PostgreSQL server and ROOT had the corresponding interface li-
braries built that the bulk of the code would work with just the change of a environment vari-
able specifying the server URL. The only known MySQL-ism known to be in the code has to do
with the loading of text files into the server as temporary tables.

The code made use of the concept of a handle or proxy, which served as the lightweight user-
facing interface; data isn’t fetched until one has a validity context in hand (as one would need to
know which detector even for tables that might be static over the experiment’s lifetime) and a
query was made, generally from the handle constructor. Cache management behind the scene
made the creation and destruction of the handles (DbiResultPtr) an inexpensive operation.

The MINOS DBI had a interface where the same row classes could be used to write into the da-
tabase (given sufficient privileges) and logs of the writes would be made to a EntryLog table.
This won’t be further discussed in this memo.

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

8

There was also a provision for what was deemed a L2Cache, which essentially wrote the result
set into a .root file for repeated use. While this worked it wasn’t heavily used as there were
issues with file management and scaling.

As mentioned earlier, the row class-objects were allowed to provide a natural index that allowed
the result set to perform an efficient lookup. For example, if the result set were a set of rows
representing something about individual planes the the natural index would be plane number --
this index was not required to be without gaps, only that there be no duplicates. There may be
more efficient or C++’ee ways of doing the same thing now.

Further Discussion

Originally MINOS table names used a StudlyCaps (or CamelCase) for the main table and the
secondary table had ``Vld’’ appended to the name. Restrictions in Oracle forced MINOS to
convert all table names (and column names) to upper case, which led to atrocities such as
BEAMMONSWICPEDSVLD instead of a more readable BeamMonSwicPedVld. If NOvA is also
forced (or desires for reasons of uniformity) to use solely upper (or lower) case it might behoove
the table designers to enforce a scheme using underscores (e.g. BEAM_MON_SWIC_PED_VLD).
Uniformity in naming styles helps to avoid user confusion by allowing them to predict how
things will be formatted.

Other naming constraints (forced on MINOS by Oracle): limit of 30 characters for table name or
field (including VLD); the need to avoid common words for names of fields (e.g. VIEW, MODE,
many others)

N O v A D B I R e q u i r e m e n t s! A m o d e s t p r o p o s a l

9

Examples

Use Case 1: normal queries

Use Case 2: extended queries

TTimeStamp when(2011,9,9,12,13,11);
VldContext vc(Detector::kNear,SimFlag::kData,when);
DbiResultPtr<DbiDemoData1> myResPtr(vc);

for (UInt_t irow = 0; irow < myResPtr.GetNumRows(); ++irow) {
 const DbiDemoData1* ddd1 = myResPtr.GetRow(irow);
 // process each row
}

// results pointers are lightweight, but also reusable
VldContext newvc(...);
UInt_t nrows = myResPtr.NewQuery(newvc);

// letting myResPtr handle (proxy) go out of scope does not
// invalidate the table cache behind it

TTimeStamp tsStart(2001,9,9,15,0,0);
TTimeStamp tsEnd(2012,7,25,12,13,11);
DbiSqlContext context(DbiSqlContext::kStarts, tsStart, tsEnd,
 Detector::kNear|Detector::kFar,SimFlag::kData);
// besides extended window, also sub-select w/ WHERE condition
DbiResultPtr<DbuSubRunSummary>
 runsResPtr(“DBUSUBRUNSUMMARY”,context,Dbi::kAnyTask,
 “RUNTYPENAME = ‘NormalData’”);

// get a row
const DbuSubRunSummary* srs = runsResPtr.GetRow(0);

// ask about the rows validity
const DbiValidityRec* vldRec = runResPtr.GetValidityRec(srs);

NOvA Off l ine Software

R o b e r t H a t c h e r (f o r N i c k We s t , e t . a l .) • F N A L / C D

Bibliography
Author Last Name, First Name. “Book Title or Reference
Title.” City: Publisher, Date.

MINOS DBI Package Overview
http://www-numi.fnal.gov/offline_software/srt_public
_context/WebDocs/Package_Overviews/DatabaseInterf
ace.html

MINOS DBI Package Rationale
http://www-numi.fnal.gov/offline_software/srt_public
_context/DatabaseInterface/doc/dbi_PR.html

MINOS DBI User Manual
http://www-numi.fnal.gov/offline_software/srt_public
_context/doc/UserManual/node9.html

Representation of times and dates
http://en.wikipedia.org/wiki/ISO_8601

NOvA Off l ine Software

R o b e r t H a t c h e r (f o r N i c k We s t , e t . a l .) • F N A L / C D

http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Package_Overviews/DatabaseInterface.html
http://www-numi.fnal.gov/offline_software/srt_public_context/DatabaseInterface/doc/dbi_PR.html
http://www-numi.fnal.gov/offline_software/srt_public_context/DatabaseInterface/doc/dbi_PR.html
http://www-numi.fnal.gov/offline_software/srt_public_context/DatabaseInterface/doc/dbi_PR.html
http://www-numi.fnal.gov/offline_software/srt_public_context/DatabaseInterface/doc/dbi_PR.html
http://www-numi.fnal.gov/offline_software/srt_public_context/doc/UserManual/node9.html
http://www-numi.fnal.gov/offline_software/srt_public_context/doc/UserManual/node9.html
http://www-numi.fnal.gov/offline_software/srt_public_context/doc/UserManual/node9.html
http://www-numi.fnal.gov/offline_software/srt_public_context/doc/UserManual/node9.html
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

